You are here

Economics

Dr John Naylon, Chief Technology Officer, CBNL

At first it doesn’t seem like modern transmission technology and accommodation booking would have many similarities!

In the abstract, however, they do share one key characteristic: the ability to dynamically reallocate resources according to demand.

In a PMP system the resources are units of time (of the order of microseconds) on a radio frequency carrier; in Airbnb the resources are units of time (in days this time) of occupancy of a room or apartment.

Why do we want to allocate resources dynamically in these two cases?

The answer is that we wish to increase the utilisation of the underlying asset: the RF carrier in the PMP case, and the room or apartment in the Airbnb case.

In a PMP system, if one link in a sector is instantaneously using less capacity than its “fair share”, then the system can reallocate those resources to another link that may have excess demand at that instant.

Likewise, if I am on holiday for two weeks, and so not using my apartment, then I may choose to rent it out while I am away.

In both cases, a resource that would have been idle - carrying no traffic, or sitting empty - is now utilised beneficially.

More importantly, this is not just a theoretical plus, but also translates into a financial benefit.

In the Airbnb case, the owner of the asset has extra income to pay for the purchase and maintenance of the asset. 

In the PMP case, overall spectrum requirements to carry a given volume of data across numerous links are reduced, and so is the financial cost of renting that spectrum from the regulator (we cover this reduction in much more detail here).

It’s this financial benefit that is driving the adoption of PMP, and also the uptake of platforms like Airbnb.

The same underlying characteristic is common to a number of other platforms and technologies; for instance Uber (like Airbnb dealing with physical resources), cloud computing and server virtualisation (like us dealing with intangible resources).

Incidentally, here at CBNL we often use Airbnb to meet our business travel needs, and we’ve stayed in some great and colourful places as a result!

Chris Wright, Marketing Manager, CBNL

It's five years since of the most significant landmarks in the telecommunications industry – when data overtook voice as the dominant traffic on mobile networks. 

This highlighted 3G and smartphone adoption across many high subscriber markets, but only really provided a glimpse of what was to come. 

Since then data has become five times that of voice. With 40 million new LTE subscriptions added during Q4 2013, data is only going one way.

The latest Ericsson Mobility Report provides an excellent summary and got us thinking.

What effect has the rise of data had on backhaul, and more specifically, how have we supported operators in developing products to meet the challenges?

Higher capacity, greater efficiency, lower costs and feature rich platforms to support quick deployment have all become staple backhaul requirements.

We’ve been privileged to support some of the largest operators in the world with solutions to meet these requirements, but have not stood still to achieve this.

Since 2009 we’ve launched four new product variants which efficiently backhaul today’s data demand trends, the latest being the wideband VectaStar Gigabit and Metro unveiled at this year’s Mobile World Congress.

To understand VectaStar’s progression over the last five years in more depth we analysed some key performance indicators which are shown on our new infographic.

As you can see, we’ve made vast technical advances which have united to establish VectaStar as one of the leading backhaul technologies on the market today.

 

Dr John Naylon, Chief Technology Officer, CBNL

Dr John Naylon, Chief Technology Officer, CBNL

CBNL doubles mobile backhaul capacity for LTE networks At Mobile World Congress this year, CBNL launched ODU-W, its VectaStar wideband point-to-multipoint (PMP) backhaul solution.

As well as being the highest capacity PMP backhaul solution in the marketplace, ODU-W is the fifth generation of the VectaStar portfolio: 5G backhaul!

The VectaStar platform has been under continuous development for over a decade.

During that time the capacity the product line can serve in a single sector has increased by a factor of ten, from 120Mbps to 1.2Gbps, while at the same time the total cost of ownership of the solution has fallen dramatically.

Correspondingly the worldwide adoption of PMP as a backhaul technology has grown rapidly and VectaStar is now used by seven of the world’s top ten largest operator groups by subscriber numbers.

Of course we are being slightly tongue-in-cheek in referring to the latest version of VectaStar as “5G backhaul”.

Most people will understand this as referring to backhaul for the generation of RAN systems that will come after 4G (LTE and LTE-Advanced).

Audience at the NGMN Press ConferenceCBNL are members of, and significant contributors to, the Next Generation Mobile Networks Alliance, or NGMN, an industry collaboration that was pivotal in the worldwide adoption of LTE.

We are therefore extremely excited by the NGMN’s new initiative for 5G announced at Mobile World Congress, and look forward to collaborating on the first outputs, expected later this year.

This kind of industry partnership is one of the prime ways that CBNL ensures its products are suited to the most demanding networking applications on earth, soon also to include 5G backhaul!

Dr John Naylon, Chief Technology Officer, CBNL

Dr John Naylon, Chief Technology Officer, CBNL

Whilst Brazil is on course to stage two major global events, there is huge potential to learn from previous events, global best practices and technologies/applications.Millions of people are expected to flock to Brazil during the summer to attend one of the most widely viewed sporting events in the world.

Spectators will be equipped with smartphones and tablets to catalogue every moment, call family and friends or share photos and videos on social media.

With Brazil going through a mobile revolution of its own, mobile broadband subscriptions have increased year on year, the 2014 FIFA World Cup could be the biggest mobile event ever held.

However, the challenges facing Brazilian operators to quickly and flexibly increase mobile connectivity are considerable – the huge strain on Brazilian mobile and internet networks will be unprecedented.

The expected surge in mobile data demand, on top of an already strained network, will require a huge amount of infrastructure and capacity planning, as well as studying lessons learnt from previous major events.

The 2012 Olympics in London, for instance, was considered the most digital Olympics ever, with its high reliance on technology for infrastructure, services and information, as well as consumption by global audiences.

There was a significant dependence on mobile data and the network infrastructure needed to backhaul the surge in traffic.

The event saw over 627,000 Facebook check-ins across the 40 plus Olympic venues.

The surge in traffic meant operators had to quickly provide multiple areas of increased mobile coverage and capacity across venues and the wider city.

At a time where CAPEX for large communication projects is limited, the demand for next generation mobile services requires innovative infrastructure which not only provides the performance needed, but can be deployed quickly and cost effectively.

An approach taken by operators during the 2010 FIFA World Cup and London 2012 was to deploy high capacity point-to-multipoint (PMP) microwave backhaul.An approach taken by operators during the 2010 FIFA World Cup and London 2012 was to deploy high capacity point-to-multipoint (PMP) microwave backhaul.

By deploying PMP microwave, operators were able to quickly, flexibly and cost effectively bring the network closer to consumers at demand hot spots (stadiums, highly populated streets, etc) and provide a seamless high quality of service.

PMP microwave creates a sector of coverage from a single hub site which can backhaul a number of cell sites.

By aggregating multiple cell site traffic to a single hub, PMP saves on the large equipment costs of traditional backhaul technologies and is able to intelligently allocate 3G, LTE or Wi-Fi mobile capacity where it is needed most.

As network challenges grow at the same pace as user expectations, cost effective technologies like PMP microwave are particularly attractive to operators where the average revenue per user is low as it delivers every bit of data in the most economical way possible.

Whilst Brazil is on course to stage two major global events, there is huge potential to learn from previous events, global best practices and technologies/applications.

Though the challenges of delivering mobile communication infrastructure for major events are significant, by utilising the best and most innovative technologies, the FIFA World Cup and Olympics will be sure to deliver victory on the track and field that the audience can share the world over.

Dr John Naylon, Chief Technology Officer, CBNL

M2M communications are transforming the world into one where everything and everyone is networked and connected.

The GSMA and Machina Research predict that the number of connected devices is set to double over the next eight years to 50 billion globally.

If that’s correct communication between these connected devices will explode.

But what does this mean for the operator and the consumer?

How will the proliferation of machine-to-machine (M2M) communications affect mobile data traffic and how can operators develop the next generation networks which will ensure that they are ready for the connected device explosion?

Debate in the industry has been centred on whether mobile operators and their network infrastructure can actually cope with the data demand that is expected with a critical mass of M2M applications.

Despite migration to 3G and LTE base stations, the proliferation of mobile connected devices continue to drive demand on networks and is challenging operators’ strategies to increase capacity and connectivity.

However, from an operator’s perspective, M2M communications is just another step in the inevitable modernisation of next generation networks.

It is imperative that operators deliver every bit of data at the lowest possible cost to not only increase capacities but to lower TCO and maintain profitability.

The best strategy to achieve this requirement is not always so clear.

Innovative next generation solutions such as small cells are the types of technologies that operators need to be considering to meet this challenge.

As always, the cost of mobile backhaul is a paramount consideration in running and launching new services, and indeed small cell backhaul equipment is forecast to expand very dramatically.

Whilst the challenge of providing high-capacity, carrier-grade backhaul to outdoor small cells has been much discussed, it is no longer seen as a barrier by forward thinking operators.

A range of efficient and flexible wireless technologies, including point-to-multipoint (PMP), is providing more cost-effective carrier-grade networks for operators than traditional backhaul techniques. 

For instance, PMP saves spectral resources and equipment through aggregating backhaul traffic from multiple cell sites.

This innovative use of wireless technology creates up to 50% TCO savings whilst delivering guaranteed quality of service over licensed spectrum.

Ultimately, M2M communications are designed to enable products and services that powerfully enrich peoples’ lives.

Current operator networks, built for voice and data transport, are already creaking under the weight of mobile data traffic and that’s even before your car checks the traffic along your route and uploads its maintenance data!

However the rate of innovation in architecture and technology in all parts of the mobile network is truly remarkable.

With wireless technologies coming to the fore, consumers can look forward to a more intelligent and connected world with networks that live up to their demands.